Answer on Question 63485, Physics, Mechanics, Relativity

Question:

A 1900 kg car moves along a horizontal road at speed $v_0 = 17.3 \ m/s$. The road is wet, so the static friction coefficient between the tires and the road is only $\mu_s = 0.136$ and the kinetic friction coefficient is even lower, $\mu_k = 0.0952$. The acceleration of gravity is 9.8 m/s^2 . Assume: No aerodynamic forces; $g = 9.8 \ m/s^2$, forward is the positive direction. What is the highest possible deceleration of the car under such conditions? Answer in units of m/s^2 .

Solution:

We can find the highest possible deceleration of the car under such conditions from the Newton's Second Law of Motion:

$$F_{net} = ma_{max},$$

here, F_{net} is the net force that acts on the car, *m* is the mass of the car and a_{max} is the highest possible deceleration of the car.

The only net force that acts on the car is the force of friction, so we can write:

$$F_{fr} = ma_{max},$$

$$\mu_k mg = ma_{max},$$

$$a_{max} = \mu_k g = 0.0952 \cdot 9.8 \frac{m}{s^2} = 0.93 \frac{m}{s^2}.$$

Answer:

 $a_{max} = 0.93 \ \frac{m}{s^2}.$

http://www.AssignmentExpert.com