Answer on Question\#55025, Physics - Astronomy, Astrophysics

If the Earth were a volley ball what would be the diameter of the Sun? What object matches this size?

Answer

The diameter of the Earth is $2 * 6400 \mathrm{~km}=1.28 * 10^{7} \mathrm{~m}$.
The diameter of the Sun is $2 * 695500 \mathrm{~km}=1.391 * 10^{9} \mathrm{~m}$.
The diameter of a volley ball is around $20 \mathrm{~cm}=0.2 \mathrm{~m}$.

$$
\frac{d_{\text {ball }}}{x}=\frac{d_{\text {Earth }}}{d_{\text {Sun }}} \rightarrow \boldsymbol{x}=\frac{d_{\text {ball }} * d_{\text {Sun }}}{d_{\text {Earth }}} \approx 22 \mathbf{m}
$$

If the Earth were a volley ball, the Sun's diameter would be $\mathbf{2 2} \mathbf{~ m}$. It is around the height of 4 - 5 storeys building.

