Answer on Question \#54954, Physics / Astronomy | Astrophysics

By equation :

$$
\mathrm{GHA}_{\odot}=\mathrm{GHAMS}+12^{\mathrm{h}}-\text { Ephemeris transit. }
$$

Hence,

$$
\mathrm{GHA} \odot=\mathrm{GHAMS}+2^{\mathrm{m}} 19^{\mathrm{s}}(\mathrm{~A})
$$

We proceed by setting up the following scheme:

	h	m	s	Date
Approximate ZT	16	30	0	June 1st
Zone	+7		0	
Approximate GD	23	30	June 1st	
Chronometer time	23	31	20	
Error (slow)		+1	10	
Correct GD	23	32	30	June 1st
Hence, GHAMS is	11	32	30	
		+2	+19	
GHA \odot	11	34	49	using (A)
Longitude (W)	-6	54	40	
HA \odot	4	40	9	

In the second last line, the longitude has been converted, thus:
$103^{\circ} 40^{\prime}=6 \times 15^{\circ}+13^{\circ}+40^{\prime}=6^{\mathrm{h}}+52^{\mathrm{m}}+160^{\mathrm{s}}=6^{\mathrm{h}} 54^{\mathrm{m}} 40^{\mathrm{s}}$.
Answer: $\mathbf{6}^{\mathrm{h}} \mathbf{5 4}^{\mathrm{m}} \mathbf{4 0}{ }^{\mathrm{s}}$

