Answer on Question \#51238-Physics-Solid State Physics

Derive an expression for the velocity of the transverse wave in the [100] direction in a cubic crystal.

Solution

The equation of motion in the x direction is

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}=C_{11} \frac{\partial^{2} u}{\partial x^{2}}+C_{44}\left(\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)+\left(C_{12}+C_{44}\right)\left(\frac{\partial^{2} v}{\partial x \partial y}+\frac{\partial^{2} w}{\partial x \partial z}\right) \tag{a}
\end{equation*}
$$

The equation of motion in the y direction is

$$
\begin{equation*}
\rho \frac{\partial^{2} v}{\partial t^{2}}=C_{11} \frac{\partial^{2} v}{\partial x^{2}}+C_{44}\left(\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right)+\left(C_{12}+C_{44}\right)\left(\frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} w}{\partial y \partial z}\right) \tag{b}
\end{equation*}
$$

The equation of motion in the z direction is

$$
\begin{equation*}
\rho \frac{\partial^{2} w}{\partial t^{2}}=C_{11} \frac{\partial^{2} w}{\partial x^{2}}+C_{44}\left(\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)+\left(C_{12}+C_{44}\right)\left(\frac{\partial^{2} u}{\partial x \partial z}+\frac{\partial^{2} v}{\partial y \partial z}\right) \tag{c}
\end{equation*}
$$

here ρ is the density and u, v, w are the components of the displacement, $C_{a b}$ are the elastic stiffness constants.

Consider a transverse or shear wave with the wavevector along the x cube edge and with the particle displacement v in the y direction:

$$
v=v_{0} e^{i(K x-\omega t)}
$$

On substitution in (b) this gives the dispersion relation

$$
\omega^{2} \rho=C_{44} K^{2}
$$

thus the velocity $\frac{\omega}{K}$ of a transverse wave in the [100] direction is

$$
v_{s}=\left(\frac{C_{44}}{\rho}\right)^{2} .
$$

The identical velocity is obtained if the particle displacement is in the z direction.
Thus for K parallel to [100] the two independent shear waves have equal velocities. This is not true for K in a general direction in the crystal.

