Answer on Question \#46358, Physics, Mechanics | Kinematics | Dynamics

Brakes are applied to a train travelling at $75 \mathrm{~km} / \mathrm{hr}$.after passing over 200 m , its velocity is reduced to $36 \mathrm{~km} / \mathrm{hr}$. at the same rate of retardation, how much further it will go before coming at rest.
Solution
Velocities in m / s are: $v_{0}=75 \mathrm{~km} / \mathrm{hr} \approx 20.8 \mathrm{~m} / \mathrm{s}, v_{1}=36 \mathrm{~km} / \mathrm{hr}=10 \mathrm{~m} / \mathrm{s}$. Lets find deceleration. We need two equations: for distance and for velocity. Here they are:

$$
\begin{gathered}
s=v_{0} t-a t^{2} / 2 \\
v=v_{0}-a t
\end{gathered}
$$

From those we can first time of first part of way:

$$
\begin{gathered}
s_{1}=v_{0} t_{1}-\left(v_{1}-v_{0}\right) t_{1} / 2 \\
t_{1}=\frac{s_{1}}{v_{0} / 2-v / 2}=\frac{200}{20.8 / 2-10 / 2} \approx 37 \mathrm{~s}
\end{gathered}
$$

Hence deceleration is

$$
a=\frac{v-v_{0}}{t}=\frac{20.8-10}{37} \approx 0.29 \mathrm{~m} / \mathrm{s}^{2}
$$

Hence, it will take time:

$$
t_{2}=\frac{10}{0.29} \approx 34.5 \mathrm{~s}
$$

to decelerate to

