Answer on Question #45788, Physics, Electric Circuits

A nichrome wire is 1.0 m long and 1.0 mm² in cross-sectional area. It carries a current of 4.0 A when a potential difference of 2 V is applied between its ends. Calculate the conductivity of the wire.

- a. $(2M\Omega m)^{-1}$
- b. $(4k\Omega m)^{-1}$
- c. $(2m\Omega m)^{-1}$
- d. $(4\Omega m)^{-1}$

Solution:

The electrical resistivity p is defined as:

$$\rho = R \frac{A}{l}$$

where

R is the electrical resistance of a uniform specimen of the material (measured in ohms, Ω) I is the length of the piece of material (measured in metres, m)

A is the cross-sectional area of the specimen (measured in square metres, m²).

Conductivity σ is defined as the inverse of resistivity:

$$\sigma = \frac{1}{\rho}$$

The resistance is

$$R = \frac{V}{I}$$

where V is the potential difference across the two points in volts and I is the current flowing between the two points in amperes.

Thus,

$$\sigma = \frac{Il}{VA}$$

$$\sigma = \frac{4.0 \cdot 1.0}{2 \cdot 1.0 \cdot 10^{-6}} = 2 \cdot 10^{6} = 2 \text{ M}\Omega\text{m}^{-1}$$

Answer: a. $(2M\Omega m)^{-1}$