Question34042

a) We are given initial conditions $v|_{t=0} = -10 \frac{m}{s}; v|_{t=2} = 10 \frac{m}{s}$. Acceleration by definition is $a = \frac{dv}{dt}$, hence integrating this equation gives $v(t) = \int_0^t a(t')dt' = k \int_0^t t'^2 dt' = \frac{kt^3}{3} + C$. Plugging in initial conditions gives $-10 = C; 10 = \frac{8}{3}k + C$, which yields $C = -10; k = \frac{30}{4}$. Thus, velocity as a function of time is $v(t) = \frac{30}{4}\frac{t^3}{3} - 10 = 2.5t^3 - 10$. b) Velocity is by definition $v(t) = \frac{dx}{dt}$. Knowing law of velocity from previous task, and integrating previous expression, obtain $x(t) = \int_0^t v(t')dt' = \frac{10}{4}\frac{t^4}{4} - 10t + C' = \frac{5}{8}t^4 - 10t + C'$. From initial condition $x|_{t=2} = 0$ derive $0 = \frac{5}{8} \cdot 16 - 10 \cdot 2 + C' \Rightarrow C' = 10$. Thus, finally equation of motion is $x(t) = \frac{5}{8}t^4 - 10t + 10$.