pion has average life span of 2.6times 10 to the -8 how long does the particle exist from perspective of the lab observer if pion moves past at .67c?

$$t = 2.6 \ 10^{-8} \ \text{s} - \text{in pion-system}$$

$$v = 0.67 c$$
 – speed of pion

In the theory of relativity, time dilation is an actual difference of elapsed time between two events (for example generation of pion and its decay) as measured by observers either moving relative to each other. The formula for determining time dilation in special relativity is:

$$t' = \gamma t = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}}$$

t - life span in pion-system

t' - life span in laboratory system

c is the speed of light

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 is the Lorentz factor

Therefore:

$$t' = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{2.6 \cdot 10^{-8}}{\sqrt{1 - 0.67^2}} = 3.5 \cdot 10^{-8} \text{ s}$$

Answer: $t' = 3.5 \cdot 10^{-8} \text{ s}$