A force of $2\vec{\imath} + 7\vec{\jmath}$ *N* acts on a body of mass 5 kg for 10 seconds. The body was initially moving with constant velocity of $\vec{\imath} - 2\vec{\jmath} \cdot \frac{m}{s}$. Find the final velocity of the body in $\frac{m}{s}$, in vector form.

Solution.

According to Newton's second law:

$$\vec{a} = \frac{\vec{F}}{m} = \frac{2\vec{\imath} + 7\vec{\jmath}}{5} = 0.4\vec{\imath} + 1.4\vec{\jmath} \frac{m}{s^2}$$
,

where \vec{F} is the force acting on the body, m is the mass of the body and \vec{a} is the acceleration of the body.

We have the uniformly accelerated motion because the acceleration \vec{a} don't depend on time. Then the velocity of the body is:

$$\vec{v} = \vec{v_0} + \vec{a}t = \vec{i} - 2\vec{j} + (0.4\vec{i} + 1.4\vec{j}) \cdot 10 = 5\vec{i} + 12\vec{j} \frac{m}{s},$$

where $\overrightarrow{v_0}$ is the initial velocity and t is the time of the acting of the force.

Answer: $5\vec{i} + 12\vec{j} \frac{m}{s}$.