Question 13297

- a) $x = a \sin \omega t$, so velocity $v = \dot{x} = a \omega \cos \omega t$. One knows, that the parametric equation of the ellipse in coordinates (x,y) is $x = A \sin \omega t$, $y = B \cos \omega t$. Comparing it with equations for x, v, in (x, v) they will represent an ellipse with A = a, $B = a \omega$
- b) Let the energy $E = \frac{m \dot{x}^2}{2} + \frac{k x^2}{2}$ be constant. One might then rewrite the last equation as

$$\frac{m \dot{x}^2}{2E} + \frac{k x^2}{2E} = 1$$
, or $\frac{\dot{x}^2}{2E} + \frac{x^2}{2E} = 1$. The equation of ellipse is given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. So,

constant energy represents the ellipse with $a=\sqrt{2\frac{E}{k}}$, $b=\sqrt{2\frac{E}{m}}$, which are constant when E=const.