Case-I

For a parabola of the shape as shown beside

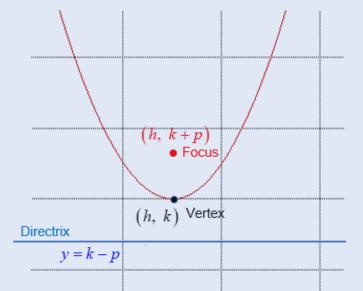
The standard equation is

$$(x-h)^2 = 4p(y-k)$$

Vertex is (h, k)

Focus is (h, k+p)

And the equation of directrix is y = k - p



Case-II

For a parabola of the shape shown beside

A standard equation of Parabola is

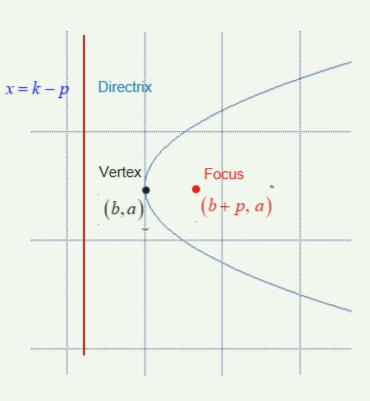
$$(y-a)^2 = 4p(x-b)$$

Vertex is (b, a)

Focus is (b+p, a)

And the equation of directrix is

$$x = b - p$$



(1). For the parabola, $(x+2)^2 = 20(y+5)$

Find the vertex, focus, and Directrix of each parabola

Solution

The given equation of the parabola is

$$(x+2)^2 = 20(y+5)$$
 ... (1)

This equation can be re-written as:

$$[x-(-2)]^2 = 4 \times 5[y-(-5)]$$
 ... (2)

Comparing equation (2) with equation of parabola, $(x-h)^2 = 4p(y-k)$,

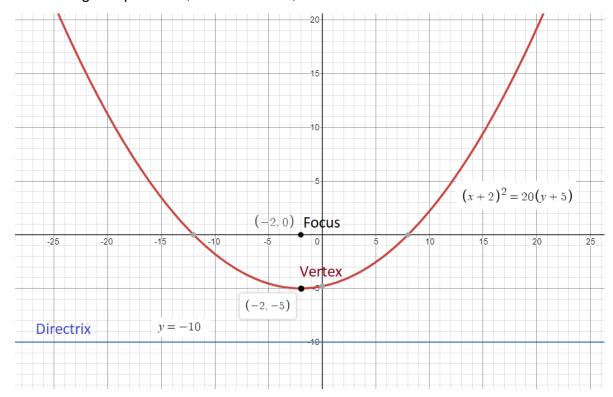
We have, h = -2 , k = -5 , p = 5 , therefore,

Vertex (h, k) = (-2, -5)

Focus is
$$(h, k+p) = (-2, -5+5)$$

= $(-2, 0)$

And equation of directrix is y = k - p = -5 - 5 \Rightarrow y = -10



For the parabola, $(x-5)^2 = 4(y+1)$ (3).

Find the vertex, focus, and Directrix of each parabola

Solution

The given equation of the parabola is

$$(x-5)^2 = 4(y+1)$$
 ... (1)

This equation can be re-written as:

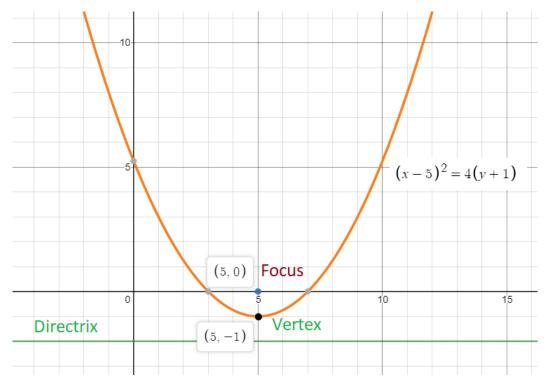
$$\left\lceil x - (5) \right\rceil^2 = 4 \times 1 \left\lceil y - (-1) \right\rceil$$
 ... (2)

Comparing equation (2) with equation of parabola, $(x-h)^2 = 4p(y-k)$,

We have, h=5, k=-1, p=1, therefore

Vertex
$$(h, k) = (5, -1)$$
 Focus is $(h, k+p) = (5, -1+1)$ $= (5, 0)$

And equation of directrix is
$$y = k - p = -1 - 1$$
 \Rightarrow $y = -2$



(5). For the parabola, $(x+4)^2 = 6(y-5)$

Find the vertex, focus, and Directrix of each parabola

Solution

The given equation of the parabola is

$$(x+4)^2 = 6(y-5)$$
 ... (1)

This equation can be re-written as:

$$[x-(-4)]^2 = 4 \times \frac{3}{2}[y-(5)]$$
 ... (2)

Comparing equation (2) with equation of parabola, $(x-h)^2 = 4p(y-k)$,

We have,
$$h = -4$$
 , $k = 5$, $p = \frac{3}{2}$, therefore

Vertex

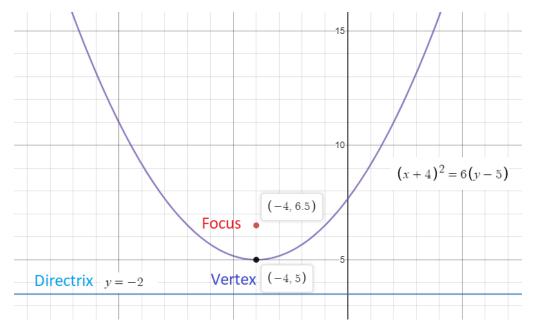
$$(h, k) = (-4,5)$$

Focus is

$$(h, k+p) = (-4,5+\frac{3}{2}) = (-4,\frac{13}{2})$$

And equation of directrix is

$$y = k - p = 5 - \frac{3}{2}$$
 \Rightarrow $y = \frac{7}{2}$



(2). For the parabola, $(y-1)^2 = -16(x+4)$

Find the vertex, focus, and Directrix of each parabola

Solution

The given equation of the parabola is

$$(y-1)^2 = -16(x+4)$$
 ... (1)

This equation can be re-written as:

Comparing equation (2) with equation of parabola, $(y-a)^2 = 4p(x-b)$,

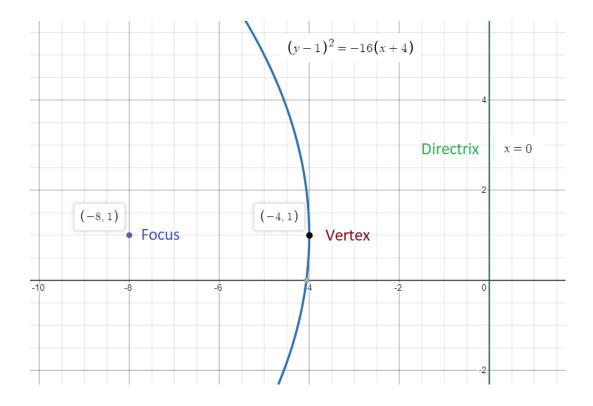
We have, b = -4, a = 1, p = -4, therefore

Vertex (b, a) = (-4,1)

Focus is
$$(b+p, a) = (-4-4,1) = (-8,1)$$

And equation of directrix is

$$x = b - p = -4 - (-4) \implies x = 0$$



(4). For the parabola, $(y-3)^2 = 12(x+1)$

Find the vertex, focus, and Directrix of each parabola

Solution

The given equation of the parabola is

$$(y-3)^2 = 12(x+1)$$
 ... (1)

This equation can be re-written as:

$$\left[y - (3) \right]^2 = 4 \times (3) \left[x - (-1) \right] \qquad \dots \tag{2}$$

Comparing equation (2) with equation of parabola, $(y-a)^2 = 4p(x-b)$,

We have, b=-1, a=3, p=3, therefore

Vertex (b, a) = (-1, 3)

Focus is
$$(b+p, a) = (-1+3,3) = (2,3)$$

And equation of directrix is

$$x = b - p = -1 - (3)$$
 \Rightarrow $x = -4$

