Answer to Question #88847 - Math - Algebra

Question

Given that alpha and beta are the roots of the equation 2xsquare -4x + 3 = 0. Form a new quadratic equation whose root are :

- A. 1/alpha, 1/beta
- **B.** 2alpha 1/beta, 2 beta^-1/2
- C. 2alpha, 2beta

Solution

$$2x^2 - 4x + 3 = 0$$

Let α , β be the roots.

then,
$$\alpha + \beta = -\frac{b}{a} = -\frac{-4}{2} = 2$$

$$\alpha\beta = \frac{c}{a} = \frac{3}{2}.$$

A.

Let
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$ be the roots of $px^2 + qx + r = 0$ or $x^2 + \frac{q}{p}x + \frac{r}{p} = 0$

then,
$$\frac{1}{\alpha} + \frac{1}{\beta} = -\frac{q}{p}$$
 and $\frac{1}{\alpha} \Box \frac{1}{\beta} = \frac{r}{p}$

$$\frac{\alpha + \beta}{\alpha \beta} = -\frac{q}{p}$$
 and $\frac{1}{\alpha \beta} = \frac{r}{p}$

$$\frac{2}{3/2} = -\frac{q}{p}$$
 and $\frac{1}{3/2} = \frac{r}{p}$

$$-\frac{4}{3} = \frac{q}{p}$$
 and $\frac{2}{3} = \frac{r}{p}$

$$\therefore \text{ Equation is : } x^2 - \frac{4}{3}x + \frac{2}{3} = 0$$

or,
$$3x^2 - 4x + 2 = 0$$
.

В.

or, $3x^2 - 8x + 8 = 0$.

Let
$$(2\alpha - \frac{1}{\beta})$$
 and $(2\beta - \frac{1}{\alpha})$ be the roots of $px^2 + qx + r = 0$ or $x^2 + \frac{q}{p}x + \frac{r}{p} = 0$
then, $2\alpha - \frac{1}{\beta} + 2\beta - \frac{1}{\alpha} = -\frac{q}{p}$ and $(2\alpha - \frac{1}{\beta})(2\beta - \frac{1}{\alpha}) = \frac{r}{p}$
 $2(\alpha + \beta) - (\frac{1}{\beta} + \frac{1}{\alpha}) = -\frac{q}{p}$ and $4\alpha\beta - 2 - 2 + \frac{1}{\alpha\beta} = \frac{r}{p}$
 $2(2) - (\frac{4}{3}) = -\frac{q}{p}$ and $4(\frac{3}{2}) - 4 + \frac{1}{3/2} = \frac{r}{p}$
 $4 - \frac{4}{3} = -\frac{q}{p}$ and $6 - 4 + \frac{2}{3} = \frac{r}{p}$
 $-\frac{8}{3} = \frac{q}{p}$ and $\frac{8}{3} = \frac{r}{p}$
 \therefore Equation is : $x^2 - \frac{8}{3}x + \frac{8}{3} = 0$

Let
$$(2\alpha)$$
 and (2β) be the roots of $px^2 + qx + r = 0$ or $x^2 + \frac{q}{p}x + \frac{r}{p} = 0$

then,
$$2\alpha + 2\beta = -\frac{q}{p}$$
 and $(2\alpha)(2\beta) = \frac{r}{p}$

$$2(\alpha + \beta) = -\frac{q}{p}$$
 and $4\alpha\beta = \frac{r}{p}$

$$2(2) = -\frac{q}{p}$$
 and $4(\frac{3}{2}) = \frac{r}{p}$

$$4 = -\frac{q}{p} \text{ and } 6 = \frac{r}{p}$$

$$-4 = \frac{q}{p}$$
 and $6 = \frac{r}{p}$

$$\therefore \text{ Equation is : } x^2 - 4x + 6 = 0$$

or,
$$x^2 - 4x + 6 = 0$$
.