Answer to Question \#88628 - Math - Calculus

Question

A solid in the shape of a hemisphere with a radius of 2 units, has its base in the xy-plane and the centre of the base at the origin. If the density of the solid is given by the function $\rho(x, y, z)=x y z$, determine the mass of the hemisphere.

Solution

$$
\text { Mass of the hemisphere }=\int \rho(x, y, z) d V
$$

Given, $\rho(x, y, z)=x y z$. Changing to spherical coordinates,
$x=r \sin \theta \cos \varphi ; y=r \sin \theta \sin \varphi ; z=r \cos \theta$.
This gives,
Mass of the hemisphere $=\int \rho(x, y, z) d V$

$$
\begin{aligned}
& =\int_{0}^{2} \int_{0}^{2 \pi} \int_{0}^{\pi / 2}(r \sin \theta \cos \varphi)(r \sin \theta \sin \varphi)(r \cos \theta) r^{2} \sin \theta d \theta d \varphi d r \\
& =\int_{0}^{2} r^{5} d r \int_{0}^{2 \pi} \cos \varphi \sin \varphi d \varphi \int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta \cos \theta d \theta \\
& =\left(\frac{2^{6}}{6}\right) * \frac{1}{2}\left(\sin ^{2} 2 \pi-\sin ^{2} 0\right) * \frac{1}{2} * \frac{1}{2}=0
\end{aligned}
$$

Hence, the mass of the hemisphere is zero.

