Answer to Question \#88535 - Math - Trigonometry

Question

If $\sin \varnothing=3 / 5$ and \varnothing is acute find $\sin ^{1} 1 / 2 \emptyset$

Solution

$\sin \varnothing=\frac{3}{5}$
We know that $\sin ^{2} \emptyset+\cos ^{2} \emptyset=1 \quad \Rightarrow \cos ^{2} \emptyset=1-\sin ^{2} \emptyset$
$\cos \emptyset=\sqrt{1-\sin ^{2} \emptyset}$ (By taking square root on both sides)
$=\sqrt{1-\left(\frac{3}{5}\right)^{2}}$ (by substituting $\sin \varnothing=\frac{3}{5}$)
$=\sqrt{1-\frac{9}{25}}$
$=\sqrt{\frac{25-9}{25}}$
$=\sqrt{\frac{16}{25}}$
$=\sqrt{\left(\frac{4}{5}\right)^{2}}$
$=\frac{4}{5}\left(\right.$ Since $\left.\sqrt{x^{2}}=x\right)$
Therefore, $\cos \emptyset=\frac{4}{5}$.
We know that \emptyset is an acute angle, then $\emptyset / 2$ also will be an acute angle. Besides, $\cos \emptyset=1-2 \sin ^{2}\left(\frac{\phi}{2}\right)$
$\Rightarrow 2 \sin ^{2}\left(\frac{\phi}{2}\right)=1-\cos \emptyset$
$\Rightarrow \sin ^{2}\left(\frac{\phi}{2}\right)=\frac{1-\cos \varnothing}{2}$ (by dividing both sides by 2)
$\Rightarrow \sin \left(\frac{\phi}{2}\right)=\sqrt{\frac{1-\cos \phi}{2}}$ (by taking square root on both sides)
$=\sqrt{\frac{1-\frac{4}{5}}{2}}$ (by substituting $\cos \emptyset=\frac{4}{5}$)
$=\sqrt{\frac{\frac{5-4}{5}}{2}}$
$=\sqrt{\frac{\left(\frac{1}{5}\right)}{2}}=\sqrt{\frac{1}{10}}$
Therefore, $\sin \left(\frac{\emptyset}{2}\right)=\frac{1}{\sqrt{10}}=0.3162$.

