Answer to Question #88535 – Math – Trigonometry

Question

If $\sin \phi = 3/5$ and ϕ is acute find $\sin \frac{1}{2}\phi$

Solution

 $\sin \phi = \frac{3}{5}$ We know that $sin^2\phi + cos^2\phi = 1 \implies cos^2\phi = 1 - sin^2\phi$ $\cos \phi = \sqrt{1 - sin^2 \phi}$ (By taking square root on both sides) $=\sqrt{1-\left(\frac{3}{5}\right)^2}$ (by substituting $\sin \phi = \frac{3}{5}$) $=\sqrt{1-\frac{9}{25}}$ $=\sqrt{\frac{25-9}{25}}$ $=\sqrt{\frac{16}{25}}$ $=\sqrt{\left(\frac{4}{5}\right)^2}$ $=\frac{4}{5}$ (Since $\sqrt{x^2} = x$) Therefore, $\cos \phi = \frac{4}{5}$. We know that \emptyset is an acute angle, then $\emptyset/2$ also will be an acute angle. Besides, $\cos \phi = 1 - 2\sin^2\left(\frac{\phi}{2}\right)$ $\Rightarrow 2sin^2\left(\frac{\emptyset}{2}\right) = 1 - \cos\emptyset$ $\Rightarrow sin^2\left(\frac{\emptyset}{2}\right) = \frac{1-\cos\emptyset}{2}$ (by dividing both sides by 2) $\Rightarrow sin\left(\frac{\phi}{2}\right) = \sqrt{\frac{1-\cos\phi}{2}}$ (by taking square root on both sides) $=\sqrt{\frac{1-\frac{4}{5}}{2}}$ (by substituting $\cos \emptyset = \frac{4}{5}$) $=\sqrt{\frac{5-4}{5}}$ $=\sqrt{\frac{\left(\frac{1}{5}\right)}{2}}=\sqrt{\frac{1}{10}}$

Therefore, $sin\left(\frac{\emptyset}{2}\right) = \frac{1}{\sqrt{10}} = 0.3162.$

Answer provided by https://www.AssignmentExpert.com