
Question #88320, Math, Differential Equations

1. If f and g are arbitrary functions of their respective arguments, show that u = f(x− vt+ iay) +

g(x− vt+ iay) is a solution of
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Solution:

Consider u = f(x− vt+ iay) + g(x− vt+ iay).

Differentiating u partially with respect to x, we get
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Differentiating u partially with respect to y, we get
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Differentiating u partially with respect to t, we get
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, Equation (2) becomes,
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From Equation (4), u = f(x − vt + iay) + g(x − vt + iay) satisfies the given differential equation and

hence the solution of the equation.
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