Answer to Question \#88266 - Math - Calculus

Question

a manufacturer knows that if x hundred of products are demanded in a particular week his total cost function would be $\mathrm{TC}=14+3 \mathrm{x}$ and the corresponding revenue function TR+19x-2x2
derive the profit function
find the breakeven point
calculate the level of demand that maximizes the profit of the company and hence calculate the maximum profits

Solution

Cost function
$C . F=14+3 x$
Revenue function
$R . F=19 x-2 x^{2}$
Thus Profit function
P.F=Revenue Function-Cost function
P.F $=19 x-2 x^{2}-14-3 x$

For breakeven point
Revenue function=cost function
$19 x-2 x^{2}=14+3 x$
$2 x^{2}-16 x+14=0$
$2 x(x-1)-14(x-1)=0$
$(x-1)(2 x-14)=0$
$x-1=0$ or $2 x-14=0$
$x=1$ or $2 x=14$
$\mathrm{x}=1$ or $\mathrm{x}=7$
we get
$x=1 ; 7$
Both value of x are the break even points
Now compute the maximum value of profit
Set derivative of profit function to be equal to zero
Thus $19-4 x-3=0$
We get $x=4$
The maximum value of profit is
$(19 \times 4)-\left(2 \times 4^{2}\right)-14-(3 \times 4)$
$=18$
at $\mathrm{x}=4$.

