Answer to Question \#8734 1-Math - Calculus

$y=f(x)=\frac{2 x^{5}+x^{2}-5}{x^{2}}$
$f(x)=2 x^{3}+1-5 x^{-2}$
$f(x)=2 x^{3}-\frac{5}{x^{2}}+1$
Using First principle : $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, we get,

$$
\frac{\left\{2(x+h)^{3}-\frac{5}{(x+h)^{2}}+1\right\}-\left\{2 x^{3}-\frac{5}{x^{2}}+1\right\}}{h}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left\{2\left(x^{3}+h^{3}+3 x^{2} h+3 x h^{2}\right)-\frac{5}{(x+h)^{2}}+1\right\}-\left\{2 x^{3}-\frac{5}{x^{2}}+1\right\}}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{2 x^{3}+2 h^{3}+6 x^{2} h+6 x h^{2}-\frac{5}{(x+h)^{2}}+1-2 x^{3}+\frac{5}{x^{2}}-1}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{2 h^{3}+6 x^{2} h+6 x h^{2}-\frac{5}{(x+h)^{2}}+\frac{5}{x^{2}}}{h}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 h^{3}+6 x^{2} h+6 x h^{2}+\frac{-5 x^{2}+5(x+h)^{2}}{x^{2}(x+h)^{2}}}{h} \\
& \frac{2 h^{3}+6 x^{2} h+6 x h^{2}+\frac{-5 x^{2}+5 x^{2}+5 h^{2}+10 x h}{x^{2}(x+h)^{2}}}{h} \\
& \frac{2 h^{3}+6 x^{2} h+6 x h^{2}+\frac{5 h^{2}+10 x h}{x^{2}(x+h)^{2}}}{h}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{h\left\{2 h^{2}+6 x^{2}+6 x h+\frac{5 h+10 x}{x^{2}(x+h)^{2}}\right\}}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0}\left\{2 h^{2}+6 x^{2}+6 x h+\frac{5 h+10 x}{x^{2}(x+h)^{2}}\right\}
\end{aligned}
$$

Plugging limit $h=0$

$$
f^{\prime}(x)=2(0)^{2}+6 x^{2}+6 x(0)+\frac{5(0)+10 x}{x^{2}(x+0)^{2}}
$$

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}+\frac{10 x}{x^{2}(x)^{2}} \\
& f^{\prime}(x)=6 x^{2}+\frac{10}{x^{3}} .
\end{aligned}
$$

