Answer to Question \#87284 - Math - Calculus

Question

1. Find the derivative $f(x)=2 x^{\wedge} 2-16 x+35$ by using first principle
a. $x+16$
b. $4 x-16$
c. $3 x-5$
d. $2 \mathrm{x}-8$

Solution
$d f(x) / d x=d / d x\left(2 x^{\wedge} 2-16 x+35\right)$
$=4 x-16$
Right option is B.

Question

2.Differentiate $y=3 V\left(x^{\wedge} 2\right)\left(2 x-x^{\wedge} 2\right)$ with respect to x
a. $y=10 \times 233-8 \times 533$
b. $y=10 \times 233+8 \times 533$
c. $y=5 \times 233-4 \times 533$
d. $y=5 \times 233+4 \times 533$

Solution

$d y / d x=d / d x\left\{3 \operatorname{sqrt}\left\{\left(x^{\wedge} 2\right)\left(2 x-x^{\wedge} 2\right)\right\}\right\}$
$d y / d x=3 d / d x\left\{\left(2 x^{\wedge} 3-x^{\wedge} 4\right)^{\wedge} 1 / 2\right\}$
$=3 / 2\left(2 x^{\wedge} 3-x^{\wedge} 4\right)^{\wedge}-(1 / 2)\left\{6 x^{\wedge} 2-4 x^{\wedge} 3\right\}$

Question

3.Evaluate the limit
a. 12
b. 8
c. 14
d. 6

Solution
Here the function is $\left.\left\{(3+h)^{\wedge} 2-18\right)\right\} / h$
Take the limit of h approach to 0
When do that, denominator is 0 and ultimately answer is infinity
Thus apply L hospital rule. Independently differential numerator and denominator wrt to h Thus function become
$=\{2(3+h)-0\} / 1$
Now take limit h tends to zero

$$
=2(3+0)
$$

$=6$
The answer is d .

