Answer to the question \#86822 - Math - Calculus

Question

Show that two scalar fields f and g

$$
\nabla .(\nabla \mathrm{f} \times(\mathrm{f} \nabla \mathrm{~g}))=0
$$

Solution

To prove this, we need the following identities:
$\nabla \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot \nabla \times \mathbf{A}-\mathbf{A} \cdot \nabla \times \mathbf{B} \quad \& \quad \nabla \times(f \mathbf{A})=f \nabla \times \mathbf{A}+\nabla f \times \mathbf{A}$
(Please note that vectors are denoted by bold capital letters).
Thus, we have

$$
\begin{aligned}
\nabla \cdot(\nabla f \times(f \nabla g)) & =(f \nabla g) \cdot(\nabla \times(\nabla f))-(\nabla f) \cdot(\nabla \times(f \nabla g))=-(\nabla f) \cdot(\nabla \times(f \nabla g)) \\
& =-(\nabla f) \cdot(f \nabla \times(\nabla g)+\nabla f \times \nabla g)=-\nabla f \cdot(\nabla f \times \nabla g)=0
\end{aligned}
$$

(Please note that in above we have used the following facts:
$\nabla \times(\nabla f)=0 \quad \& \quad \mathbf{A} \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{0})$.
For any scalar function f we have $\nabla \times(\nabla \mathrm{f})=0$. So you have the same result for the scalar function g , i.e., $\nabla \times(\nabla \mathrm{g})=0$. Now by multiplying the both sides of this equation by f we obtain $\mathrm{f} \nabla \times(\nabla \mathrm{g})=\mathrm{f} \times 0=0$.

