Answer to Question \#86490 - Math - Calculus

Question

The length of a rectangle is increasing at a rate of $4 \mathrm{~cm} / \mathrm{s}$ and its width is increasing at a rate of $5 \mathrm{~cm} / \mathrm{s}$. When the length is 11 cm and the width is 7 cm , how fast is the area of the rectangle increasing?

Solution

Let the length of the rectangle be x and the width be y.
Then the area is $A=x y$
Given that,
$\frac{d x}{d t}=4 ; \frac{d y}{d t}=5$
Differentiating area A wrto time t we get,
$\frac{d A}{d t}=\frac{d}{d t}(x y)$
$\frac{d A}{d t}=y \frac{d x}{d t}+x \frac{d y}{d t}$
Given that, $x=11$ and $y=7$
Then we get,
$\frac{d A}{d t}=7(4)+11(5)$
$\frac{d A}{d t}=28+55$
$\frac{d A}{d t}=83$
Hence the area is increasing at the rate of $83 \mathrm{~cm}^{2} / \mathrm{s}$.
Answer: $83 \mathrm{~cm}^{2} / \mathrm{s}$.

