Answer to Question \#86187-Math - Calculus

Question:

A solid in the shape of a hemisphere with a radius of 2 units, has its base in the xy-plane and the centre of the base at the origin. If the density of the solid is given by the function $\rho(x, y, z)=x y z$, determine the mass of the hemisphere.

Solution:

Mass of the hemisphere $M=\iiint_{V} \rho d V$
$M=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} x y z d z d y d x$
$M=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} x y\left[\frac{z^{2}}{2}\right]_{0}^{\sqrt{4-x^{2}-y^{2}}} d y d x$
$M=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} x y\left[\frac{4-x^{2}-y^{2}}{2}\right] d y d x$
$M=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} x\left[\frac{4 y-x^{2} y-y^{3}}{2}\right] d y d x$ Since the integrand is an odd function in y,
$M=0$.
Hence mass of this hemisphere $=0$.

