Question

If $6 \Phi \cos \Phi + 2 \sin^2 \Phi = 5$, show that $\tan^2 \Phi - \frac{1}{3}$

Solution

$$6\cos\varphi + 2\sin^2\varphi = 5;$$

$$6\cos\varphi + 2 - 2\cos^2\varphi - 5 = 0;$$

$$6\cos\varphi - 2\cos^2\varphi - 3 = 0;$$

$$2\cos^2\varphi - 6\cos\varphi + 3 = 0$$

If $x = \cos\varphi$ and $-1 \le \cos\varphi \le 1$ that $2x^2 - 6x + 3 = 0;$

$$2x^2 - 6x + 3 = 0;$$

$$x = \frac{6 \pm \sqrt{36 - 4 * 2 * 3}}{2 * 2};$$

$$x = 1.5 - 0.5\sqrt{3};$$

 $x = 1.5 + 0.5\sqrt{3} - \text{ this solution is not included in the range} - 1 \le \cos\varphi \le 1$ Then $\cos\varphi = 1.5 - 0.5\sqrt{3}$; $\tan^2\varphi + 1 = \frac{1}{\cos^2\varphi}$;

 $tan^2 \varphi = \frac{1}{cos^2 \varphi} - 1 = \frac{1}{(1.5 - 0.5\sqrt{3})^2} - 1$ and it is not equal to $\frac{1}{3}$.

P.S. The task probably contains a typo $\Phi \cos \Phi$ since that equation can be solved with a help of the graphical method and numerical approximations.

Answer provided by https://www.AssignmentExpert.com