Answer on Question \# 86026 - Math - Statistics and Probability

Question

A binomial probability experiment is conducted with the given parameters. Compute the probability of x successes in the n independent trials of the experiment.
$\mathrm{n}=60, \mathrm{p}=0.02, \mathrm{x}=2$

Solution

The probability of \boldsymbol{x} successes in the \boldsymbol{n} independent trials of the experiment is equal to $P_{n}(x)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}$,
where \boldsymbol{p} is the probability of success in the independent trial of the experiment.
In our problem $\boldsymbol{n}=60, \boldsymbol{x}=2, \boldsymbol{p}=0.02$.
So $P_{60}(2)=\frac{60!}{2!*(60-2)!} * 0.02^{2} *(1-0.02)^{60-2}=\frac{60!}{2!* 58!} * 0.02^{2} * 0.98^{58}=$ $=1770 * 0.0004 * 0.30982=0.2194$

Answer:

The probability of 2 successes in the 60 independent trials of the experiment is equal to 0.2194 .

