Answer on Question \#85964 - Math - Discrete Mathematics

Question

Recall that a real number x is rational if $\mathrm{x}=\mathrm{p} / \mathrm{q}$ for integers p , q with $\mathrm{q} \neq 0$.
Prove that if x is rational then $1 /(2 x+1)$ is rational. Then prove that if $1 /(2 \mathrm{x}+1)$ is rational then x is rational.

Solution

1) If \boldsymbol{x} is rational then $\boldsymbol{x}=\frac{\boldsymbol{p}}{\boldsymbol{q}}$, where \boldsymbol{p} and \boldsymbol{q} are integers with $\boldsymbol{q} \neq 0$.

So $\frac{1}{2 x+1}=\frac{1}{2 \frac{p}{q}+1}=\frac{1}{\frac{2 p+q}{q}}=\frac{q}{2 p+q}$. Since q and $2 p+q$ are integers with $2 p+q \neq 0$, then $\frac{q}{2 p+q}=\frac{1}{2 x+1}$ is rational.
2) If $\frac{\mathbf{1}}{2 x+1}$ is rational then $\frac{\mathbf{1}}{2 x+1}=\frac{p}{q}$, where p and \boldsymbol{q} are integers with $\boldsymbol{q} \neq 0$. In addition, $p=q * \frac{\mathbf{1}}{2 x+1} \neq \mathbf{0}$. Therefore $2 x+1=\frac{q}{p}$, and $2 x=\frac{q}{p}-\mathbf{1}=\frac{q-p}{p}$. So $x=\frac{q-p}{2 p}$. Since $\boldsymbol{q}-\boldsymbol{p}$ and $2 p$ are integers with $2 p \neq 0$, then $\frac{\boldsymbol{q - p}}{2 \boldsymbol{p}}=\boldsymbol{x}$ is rational.

