Answer on Question #85964 – Math – Discrete Mathematics

Question

Recall that a real number x is rational if x = p/q for integers p, q with $q \neq 0$.

Prove that if x is rational then 1/(2x + 1) is rational. Then prove that if 1/(2x+1) is rational then x is rational.

Solution

1) If **x** is rational then $\mathbf{x} = \frac{p}{q}$, where **p** and **q** are integers with $\mathbf{q} \neq 0$. So $\frac{1}{2x+1} = \frac{1}{2\frac{p}{q}+1} = \frac{1}{\frac{2p+q}{q}} = \frac{q}{2p+q}$. Since **q** and 2p + q are integers with $2p + q \neq 0$, then $\frac{q}{2p+q} = \frac{1}{2x+1}$ is rational.

2) If $\frac{1}{2x+1}$ is rational then $\frac{1}{2x+1} = \frac{p}{q}$, where p and q are integers with $q \neq 0$. In addition, $p = q * \frac{1}{2x+1} \neq 0$. Therefore $2x + 1 = \frac{q}{p}$, and $2x = \frac{q}{p} - 1 = \frac{q-p}{p}$. So $x = \frac{q-p}{2p}$. Since q - p and 2p are integers with $2p \neq 0$, then $\frac{q-p}{2p} = x$ is rational.

Answer provided by https://www.AssignmentExpert.com