Answer on Question \#85920 - Math - Statistics and Probability

Question

A dice is tossed 120 times with the following results:

Number turned up	Frequency
1	30
2	25
3	18
4	10
5	22
6	15

Test the hypothesis that the dice is unbiased.

Solution

Null Hypothesis: Set up the null hypothesis that the dice is unbiased. On the basis of hypothesis that the dice is unbiased, we expect each number to turn up,

$$
\frac{30+25+18+10+22+15}{6}=20 \text { times }
$$

Apply $\chi^{2}-$ test (Chi Square Test)

O	E	$(O-E)^{2}$	$\frac{(O-E)^{2}}{E}$
30	20	100	5
25	20	25	1.25
18	20	4	0.2
10	20	100	5
22	20	4	0.2
15	20	25	1.25
			$\sum \frac{(O-E)^{2}}{E}=12.9$

No of degrees of freedom $=n-1=6-1=5$
For 5 degrees of freedom at 5% level of significance, the table value of χ^{2} is 11.07. The calculated value of χ^{2} is greater than the table value and hence we reject the null hypothesis that dice is unbiased.
We conclude that the dice is biased.

