Answer on Question \#85906 - Math - Discrete Mathematics

Question

Prove by mathematical induction the formula

$$
1^{3}+2^{3}+3^{3}+4^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Solution

For any integer $n \geq 1$, let P_{n} be the statement that

$$
1^{3}+2^{3}+3^{3}+4^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Base case. The statement P_{1} says that

$$
1^{3}=\frac{1^{2}(1+1)^{2}}{4}
$$

which is true.
Inductive case. Fix $k \geq 1$, and suppose that P_{k} holds, that is,

$$
1^{3}+2^{3}+3^{3}+4^{3}+\cdots+k^{3}=\frac{k^{2}(k+1)^{2}}{4}
$$

It remains to show that P_{k+1} holds, that is,

$$
\begin{aligned}
& \quad 1^{3}+2^{3}+3^{3}+4^{3}+\cdots+(k+1)^{3}=\frac{(k+1)^{2}((k+1)+1)^{2}}{4} \\
& 1^{3}+2^{3}+3^{3}+4^{3}+\cdots+(k+1)^{3}= \\
& =1^{3}+2^{3}+3^{3}+4^{3}+\cdots+k^{3}+(k+1)^{3}= \\
& =\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}= \\
& =(k+1)^{2}\left(\frac{k^{2}}{4}+k+1\right)= \\
& =\frac{(k+1)^{2}}{4}\left(k^{2}+4 k+4\right)= \\
& =\frac{(k+1)^{2}}{4}(k+2)^{2}= \\
& =\frac{(k+1)^{2}((k+1)+1)^{2}}{4}
\end{aligned}
$$

Therefore, P_{k+1} holds.
Therefore, by the principle of mathematical induction, for all $n \geq 1, P_{n}$ holds

$$
1^{3}+2^{3}+3^{3}+4^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}, n \in \mathbb{N}
$$

