Answer on Question \#85800 - Math - Discrete Mathematics

Question

Prove that for all integers $n, n(n+2)(n+4)$ is divisible by 3 .

Solution

There are only 3 possible remainders when dividing by 3 , namely $0,1,2$. If n has the remainder 0 (that is, $n \bmod 3=0$), it means that n is divisible by 3 and hence $n(n+2)(n+4)$ is divisible by 3 too because n is a multiplier of the expression $n(n+2)(n+4)$.
If n has the remainder 1 (that is, $n \bmod 3=1$), then $(n+2)$ is divisible by 3 because $(n+2)$ has the remainder $1+2=3$ and it is the same as to have the remainder $0 \bmod 3$, therefore $n(n+2)(n+4)$ is divisible by 3 too.
If n has the remainder 2 (that is, $n \bmod 3=2$), then $(n+4)$ is divisible by 3 because $(n+4)$ has the remainder $2+4=6$ and it is the same as to have the remainder $0 \bmod 3$, therefore $n(n+2)(n+4)$ is divisible by 3 too.
Thus, in any case $n(n+2)(n+4)$ is divisible by 3 .

