Answer on Question \#85733 - Math - Calculus

Question

Apply implicit function theorem to the equation $x^{3}+y^{3}-6 x y+4=0$ and show that the equation defines a unique function g defined in a neighbourhood of the point $(1,1)$ such that $g(1)=1$. Also find g^{\prime}.

Solution

The function $F(x, y)=x^{3}+y^{3}-6 x y+4$ is a polynomial function, and therefore a continuously differentiable function. The point $p=(1,1)$ satisfies the equation: $1+1-6+4=0$. The derivative $\partial_{y} F=3 y^{2}-6 x$ is not zero at $p: 3-6 \neq 0$. Thus, $F(x, y)$ meets all conditions of implicit function theorem, and implicit function $y=g(x)$ exists in a neighbourhood of p.
Also by the theorem, $g^{\prime}(x)=-\partial_{x} F / \partial_{y} F(x, g(x))=-\left(3 x^{2}-6 g\right) /\left(3 g^{2}-6 x\right)$.

Answer:

$g^{\prime}=-\left(3 x^{2}-6 g\right) /\left(3 g^{2}-6 x\right)$.

