Answer on Question \#85729 - Math - Calculus Question

Use Lagranges Multipliers method to prove that the rectangle of perimeter 4 with largest area is a unit square.

Solution

a) $S=x y$.

$$
\begin{gathered}
P=2 x+2 y=4 \Rightarrow x+y=2 \Rightarrow x+y-2=0 \Rightarrow L(x, y, \lambda)=x y+\lambda(x+y-2) . \\
L_{x}^{\prime}=y+\lambda=0, L_{y}^{\prime}=x+\lambda=0, L_{\lambda}^{\prime}=x+y-2=0 \Rightarrow\left\{\begin{array} { c }
{ y + \lambda = 0 } \\
{ x + \lambda = 0 } \\
{ x + y - 2 = 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x=1 \\
y=1 \\
\lambda=-1
\end{array}\right.\right. \\
L_{x x}^{\prime \prime}=0, L_{x y}^{\prime \prime}=1, L_{x \lambda}^{\prime \prime}=1 ; L_{y y}^{\prime \prime}=0, L_{y \lambda}^{\prime \prime}=1, L_{\lambda \lambda}^{\prime \prime}=0 \\
\max S(x, y)=L(1,1,-1)=1 \cdot 1-1 \cdot(1+1-2)=1 . \\
b) S=x y \leq\left(\frac{x+y}{2}\right)^{2}=\left(\frac{2}{2}\right)^{2}=1 \Rightarrow \max S(x, y)=1 .
\end{gathered}
$$

Answer:

$$
\operatorname{maxS}(x, y)=\left.\max (x \cdot y)\right|_{\substack{x, y>0 \\ x+y=2}}=1
$$

