Answer on Question \#85701 - Math - Calculus

Question

Trace the curve

$$
\begin{equation*}
y^{2}=(x+1)(x-1)^{2} \tag{1}
\end{equation*}
$$

by showing all the properties you use to trace it.

Solution

1. Domain:
$x+1>0 \Rightarrow x>-1 \Rightarrow x \in(-1 ; \infty)$.
2. Symmetrical:

The curve is symmetric about y-axis because at $\mathrm{y}>0$ and $y<0$ the left and right sides of this curve do not change the sign.
3. Not periodic.
4. Points of intersection with axes of coordinates:
$y^{2}=(x+1)(x-1)^{2} \Leftrightarrow y= \pm \sqrt{x+1}|x-1|$
Ox: $f(x)=0 \Rightarrow x=-1$ and $x=1 \Rightarrow(-1 ; 0)$ and $(1 ; 0)$ - wanted points;
$\mathrm{Oy}: x=0 \Longrightarrow f(0)= \pm 1 \Longrightarrow(0 ;-1)$ and $(0 ; 1)$.
5. Extremums and monotony intervals:

$$
\begin{gathered}
\left(y^{2}\right)^{\prime}=\left((x+1)(x-1)^{2}\right)^{\prime} \Rightarrow 2 y y^{\prime}=(x-1)^{2}+2(x-1)(x+1) \Rightarrow \\
y^{\prime}=\frac{(x-1)(3 x+1)}{2 y}=\frac{(x-1)(3 x+1)}{ \pm 2 \sqrt{x+1}|x-1|} \\
y^{\prime}=0 \Rightarrow \frac{(x-1)(3 x+1)}{ \pm 2 \sqrt{x+1}|x-1|}=0 \Rightarrow 3 x+1=0 \Rightarrow x=-\frac{1}{3}, x \neq-1, x \neq 1
\end{gathered}
$$

a) $y^{\prime}=\frac{(x-1)(3 x+1)}{2 \sqrt{x+1}|x-1|}$ for $\begin{gathered}y=\sqrt{x+1}|x-1| \\ +\end{gathered}$

$x \in\left(-1 ;-\frac{1}{3}\right)$ - the function is monotonously increasing;
$x \in\left(-\frac{1}{3} ; 1\right)$ - the function is monotonously decreases;
$x \in(1 ;+\infty)$ - the function is monotonously increasing;
$\left(-\frac{1}{3} ; \frac{4 \sqrt{6}}{9}\right)$ is the point of maximum and $(1 ; 0)$ is the point of minimum.
b) $y^{\prime}=-\frac{(x-1)(3 x+1)}{2 \sqrt{x+1}|x-1|}$ for $y=-\sqrt{x+1}|x-1|$

$x \in\left(-1 ;-\frac{1}{3}\right)$ - the function is monotonously decreases;
$x \in\left(-\frac{1}{3} ; 1\right)$ - the function is monotonously increasing;
$x \in(1 ;+\infty)$ - the function is monotonously decreases ;
$\left(-\frac{1}{3} ;-\frac{4 \sqrt{6}}{9}\right)$ is the point of minimum and $(1 ; 0)$ is the point of maximum .
6. Points of overhang and concavity:

$$
f(x)^{/ /}=0
$$

a) $y^{\prime}=\frac{(x-1)(3 x+1)}{2 \sqrt{x+1}|x-1|}, y^{\prime /}=\frac{(x-1)(3 x-1) x}{4(x+1) \sqrt{x+1}|x-1|}$ for $\quad y=\sqrt{x+1}|x-1| \Rightarrow \frac{(x-1)(3 x-1) x}{4(x+1) \sqrt{x+1}|x-1|}=0$

$$
\Rightarrow x=0, x=\frac{1}{3}, x \neq 1, x \neq-1
$$

$x \in(-1 ; 0)$ and $\left(\frac{1}{3} ; 1\right)$ - the curve is convex,
$x \in\left(0 ; \frac{1}{3}\right)$ and $(1 ;+\infty)$ - the curve is curved.
b) $y^{\prime}=-\frac{(x-1)(3 x+1)}{2 \sqrt{x+1}|x-1|}$,

$$
\begin{gathered}
y^{\prime /}=-\frac{(x-1)(3 x-1) x}{4(x+1) \sqrt{x+1}|x-1|} \quad \text { for } \quad y=-\sqrt{x+1}|x-1| \quad \Rightarrow \quad-\frac{(x-1)(3 x-1) x}{4(x+1) \sqrt{x+1}|x-1|}=0 \\
\Rightarrow x=0, x=\frac{1}{3}, x \neq 1, x \neq-1
\end{gathered}
$$

$x \in(-1 ; 0)$ and $\left(\frac{1}{3} ; 1\right)$ - the curve is curved,
$x \in\left(0 ; \frac{1}{3}\right)$ and $(1 ;+\infty)$ - the curve is convex.
7. Asymptotes:
a) horizontal asymptotes is not so $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}(\pm \sqrt{x+1}|x-1|)=\infty$, $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}(\pm \sqrt{x+1}|x-1|)-$ does not exist;
b) vertical asymptotes is not so (1) is continuous at $x \in(-1 ;+\infty)$;
c) inclined asymptotes is not so $\lim _{x \rightarrow \pm \infty} \frac{ \pm \sqrt{x+1}|x-1|}{x}= \pm \infty$.
8. We build the function (1) graph (use research 1-7):

Answer provided by https://www.AssignmentExpert.com

