Answer on Question \#85656 - Math - Calculus

Question

The function f , defined by $f(x)=x^{2}-2 x+7$, is monotonic in the interval $[1, \infty[$. Is the statement true or false? Give reason to support your answer.

Solution

Function is called monotonic if and only if it is either entirely non-increasing, or entirely nondecreasing.

A function is monotonic if its first derivative does not change sign. Derivative changes sign at points where $f^{\prime}(x)=0$, so we find these points.

$$
\begin{gathered}
f^{\prime}(x)=\left(x^{2}-2 x+7\right)^{\prime}=2 x-2 \\
2 x-2=0 \\
x=1
\end{gathered}
$$

The derivative of $\mathrm{f}(\mathrm{x})$ does not change sign in $[1, \infty[$, thus the function $f(x)$ is monotonic in the interval $[1, \infty[$.

Answer: The statement is true. The function $f(x)=x^{2}-2 x+7$ is monotonic in the interval [$1, \infty$ [.

