Answer on Question \#85605 - Math - Statistics and Probability

Question

In 500 independent calculations, a student made 25 errors. His instructor randomly checked seven calculations of the student. Find the probability that instructor detects
i) Exactly 2 errors
ii) At most two errors

Solution

Let \boldsymbol{p} is the probability that instructor detects error in randomly selected calculation of the student. Then $p=\frac{25}{500}=0.05$.
The probability that instructor detects in \boldsymbol{n} calculations exactly \boldsymbol{k} errors is equal to
$P_{n}(k)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}$,
i) In our problem $\boldsymbol{n}=7, \boldsymbol{k}=2, \boldsymbol{p}=0.05$.

So $\boldsymbol{P}_{\mathbf{7}}(\mathbf{2})=\frac{\mathbf{7 !}}{2!*(\mathbf{7 - 2) !}} * \mathbf{0 . 0 5}{ }^{\mathbf{2}} *(\mathbf{1} \mathbf{0 . 0 5})^{\mathbf{7 - 2}}=\mathbf{2 1} * \mathbf{0 . 0 5} \mathbf{2}^{\mathbf{2}} * \mathbf{0 . 9 5} 5^{\mathbf{5}}=0.04062$
ii) The probability that instructor detects in 7 calculations at most two errors is equal to
$P_{7}(\leq 2)=P_{7}(2)+P_{7}(1)+P_{7}(0)=\frac{7!}{2!*(7-2)!} * 0.05^{2} *(1-0.05)^{7-2}+$
$+\frac{7!}{1!*(7-1)!} * 0.05^{1} *(1-0.05)^{7-1}+\frac{7!}{0!*(7-0)!} * 0.05^{0} *(1-0.05)^{7-0}=$
$=0.04062+\mathbf{7} * \mathbf{0 . 0 5}{ }^{\mathbf{1}} * \mathbf{0 . 9 5}{ }^{\mathbf{6}}+\mathbf{1} * \mathbf{1} * \mathbf{0 . 9 5 ^ { 7 }}=0.04062+0.25728+0.69834=$
$=0.9962$

Answer:

i) The probability that instructor detects in 7 calculations exactly 2 errors is equal to 0.04062 .
ii) The probability that instructor detects in 7 calculations at most two errors is equal to 0.9962 .

