Answer on Question \#855579 - Math - Statistics and Probability

Question

A random sample of size 64 has been drawn from a population with standard deviation 20. The mean of the sample is 80 .
i) Calculate 95% confidence limits for the population mean.
ii) How does the width of the confidence interval changes if the sample size is 256 instead?

Solution

i) $95 \% C I=\left(\bar{x}-z_{0.025} \frac{s}{\sqrt{n}}, \bar{x}+z_{0.025} \frac{s}{\sqrt{n}}\right)=$

$$
=\left(80-1.96 \frac{20}{\sqrt{64}}, 80+1.96 \frac{20}{\sqrt{64}}\right)=(75.1,84.9) .
$$

Width of the confidence interval: $84.9-75.1=9.8$.
ii) $95 \% C I=\left(\bar{x}-z_{0.025} \frac{s}{\sqrt{n}}, \bar{x}+z_{0.025} \frac{s}{\sqrt{n}}\right)=$
$=\left(80-1.96 \frac{20}{\sqrt{256}}, 80+1.96 \frac{20}{\sqrt{256}}\right)=(77.55,82.45)$.
Width of the confidence interval: $82.45-77.55=4.9$.
The width will decrease by 2 times.

