Answer to Question \#85578 - Math - Statistics and Probability

Question: The mean and the standard deviation of 20 items is found to be 10 and 2 respectively. At the time of checking it was found that one items with value 8 was incorrect. Calculate the mean and standard deviation if the wrong item is omitted.

Solution: Given that the mean is 10 , standard deviation is 2 , and there are 20 items. If the values are $x_{1}, x_{2}, \ldots, x_{20}$, then we have,

$$
\begin{equation*}
\text { mean }=\bar{x}=\frac{1}{20} \sum_{i=1}^{20} x_{i}=10 \tag{1}
\end{equation*}
$$

and standard deviation $=\sqrt{\frac{1}{20} \sum_{i=1}^{20}\left(x_{i}-\bar{x}\right)^{2}}=2$
From equation (1), we have, $\sum_{i=1}^{20} x_{i}=200$
and from equation (2),

$$
\begin{aligned}
& \frac{1}{20} \sum_{i=1}^{20}\left(x_{i}-\bar{x}\right)^{2}=4 \\
= & \frac{1}{20} \sum_{i=1}^{20} x_{i}^{2}-\bar{x}^{2}=4 \\
= & \frac{1}{20} \sum_{i=1}^{20} x_{i}^{2}=4+10^{2}=104 \\
= & \sum_{i=1}^{20} x_{i}^{2}=104 \times 20=2080
\end{aligned}
$$

Let x_{k} denote the wrong entry for some $k \in\{1,2, \ldots, 20\}$. So, $x_{k}=8$
If we omit x_{k}, then there are 19 entries. So the new mean is,
mean $=\frac{1}{19}\left(\left(\sum_{i=1}^{20} x_{i}\right)-x_{k}\right)=\frac{200-8}{19}=\frac{192}{19} \approx 10.105$
Let's call this new mean $\bar{x}^{\prime}=\frac{192}{19}$

$$
\begin{aligned}
\text { Variance } & =\frac{1}{19}\left(\left(\sum_{i=1}^{20} x_{i}^{2}\right)-x_{k}^{2}\right)-\bar{x}^{\prime 2} \\
& =\frac{1}{19}\left(2080-8^{2}\right)-\left(\frac{192}{19}\right)^{2} \\
& \approx 3.9889
\end{aligned}
$$

Therefore, standard deviation $\approx \sqrt{3.9889} \approx 1.997$
Answer:

- \quad Mean $=10.105$
- Standard deviation $=1.997$

