Answer to Question \#85521 - Math - Statistics and Probability

Question: Let X be a continuous random variable with probability density function given by,

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{2} x, \text { for } 0 \leq x \leq 2 \\
0, \text { otherwise }
\end{array}\right.
$$

Determine the mean and variance of this distribution.
Solution: First we need to check that the function f given in the question is a density function.

- $\forall x \in \mathbb{R}, f(x) \geq 0$

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{2} \frac{1}{2} x d x=1
$$

Therefore, f is a density.

Calculating the mean:

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{0}^{2} x \cdot \frac{1}{2} x d x \\
& =\int_{0}^{2} \frac{x^{2}}{2} d x \\
& =\frac{4}{3}
\end{aligned}
$$

Hence, we have, $E(X)=\frac{4}{3}$

Calculating the variance:

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x \\
& =\int_{0}^{2} x^{2} \cdot \frac{1}{2} x d x \\
& =\int_{0}^{2} \frac{x^{3}}{2} d x \\
& =\frac{16}{8} \\
& =2
\end{aligned}
$$

Hence, we have, $E\left(X^{2}\right)=2$

$$
\begin{aligned}
\operatorname{Var}(X) & =E(X-E(X))^{2} \\
& =E\left(X^{2}\right)-(E(X))^{2} \\
& =2-\left(\frac{4}{3}\right)^{2} \\
& =\frac{2}{9}
\end{aligned}
$$

Hence, we have, $\operatorname{Var}(X)=\frac{2}{9}$

Answer:

- $E(X)=\frac{4}{3}$
- $\operatorname{Var}(X)=\frac{2}{9}$

