Answer on Question \#85486 - Math - Calculus

Question

Trace the curve
$22 y=(x+1)(x-1)$
By showing all the properties you use to trace it.

Solution

1. Domain:
$x \in(-\infty ;+\infty)$.
2. Symmetrical:
$22 y=(x+1)(x-1) \Leftrightarrow y=\frac{(x+1)(x-1)}{22}=f(x)$,
then $f(-x)=\frac{(-x+1)(-x-1)}{22}=\frac{(x-1)(x+1)}{22}=f(x)$ - the function is even and symmetric with respect to the Oy axis.
3. Not periodic.
4. Points of intersection with axes of coordinates:

Ox: $f(x)=0 \Rightarrow x=-1$ and $x=1 \Rightarrow(-1 ; 0)$ and $(1 ; 0)$-wanted points;
$\mathrm{Oy}: x=0 \Rightarrow f(0)=\frac{(0+1)(0-1)}{22}=-\frac{1}{22} \Rightarrow\left(0 ;-\frac{1}{22}\right)$.
5. Extremes and monotony intervals:

$$
f(x)^{\prime}=\underbrace{\left(\frac{(x+1)(x-1)}{22}\right)^{\prime}=\frac{x}{11^{\prime}}, f(x)^{\prime}=0 \Rightarrow \frac{x}{11}=0 \Rightarrow x=0 \text {. }<\text { ? }}_{0}
$$

$x \in(-\infty ; 0)$ - the function is monotonously decreases;
$x \in(0 ; \infty)$ - the function is monotonously increasing;
($0 ;-\frac{1}{22}$)- the point of maximum.
6. Points of overhang and concavity:
$f(x)^{\prime /}=0 \Rightarrow \frac{1}{11}=0$ - there is no equation of deviations
7. Asymptotes:
a) horizontal asymptotes is not so $\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty} \frac{(x+1)(x-1)}{22}= \pm \infty$;
b) vertical asymptotes is not so $f(x)=\frac{(x+1)(x-1)}{22}$ is continuous;
c) inclined asymptotes is not so $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}= \pm \infty$.
8. We build the function (1) graph (use research 1-7):

Answer provided by https://www.AssignmentExpert.com

