Answer on Question \#85484 - Math - Calculus

Question

Obtain the reduction formula for \&int $(\cos x)^{\wedge} n d x$, ; where n is an integer which is greater
than 1. Hence evaluate \int
$\pi / 2$
0
$(\cos x)^{\wedge} 6 \mathrm{dx}$.

Solution

We have

$$
\int \cos ^{n} x d x
$$

Rewrite the integral in the form

$$
\int \cos ^{n-1} x \cdot \cos x d x
$$

Use the formula for integration by parts

$$
\int u d v=u v-\int v d u
$$

Let

$$
\begin{gathered}
u=\cos ^{n-1} x \\
d v=\cos x d x
\end{gathered}
$$

Then

$$
\begin{gathered}
d u=\left(\cos ^{n-1} x\right)^{\prime} d x=(n-1) \cos ^{n-2} x \cdot(-\sin x) d x \\
v=\sin x
\end{gathered}
$$

So integration by parts gives

$$
\int \cos ^{n} x d x=\sin x \cdot \cos ^{n-1} x-\int(n-1) \cos ^{n-2} x \cdot(-\sin x) \sin x d x
$$

or

$$
\int \cos ^{n} x d x=\sin x \cdot \cos ^{n-1} x+(n-1) \int \cos ^{n-2} x \cdot \sin ^{2} x d x
$$

Since $\sin ^{2} x=1-\cos ^{2} x$, we have

$$
\int \cos ^{n} x d x=\sin x \cdot \cos ^{n-1} x+(n-1) \int \cos ^{n-2} x \cdot\left(1-\cos ^{2} x\right) d x
$$

or

$$
\int \cos ^{n} x d x=\sin x \cdot \cos ^{n-1} x+(n-1) \int \cos ^{n-2} x d x-(n-1) \int \cos ^{n} x d x
$$

This can be regarded as an equation to be solved for the unknown integral. Adding

$$
(n-1) \int \cos ^{n} x d x
$$

to both sides, we obtain

$$
n \int \cos ^{n} x d x=\sin x \cdot \cos ^{n-1} x+(n-1) \int \cos ^{n-2} x d x
$$

or

$$
\int \cos ^{n} x d x=\frac{1}{n} \sin x \cdot \cos ^{n-1} x+\frac{n-1}{n} \int \cos ^{n-2} x d x
$$

This is desired reduction formula.
Now we evaluate

$$
\int_{0}^{\pi / 6} \cos ^{6} x d x
$$

Using the reduction formula for $n=6$ we get

$$
\int_{0}^{\pi / 2} \cos ^{6} x d x=\left.\frac{1}{6} \sin x \cdot \cos ^{5} x\right|_{0} ^{\pi / 2}+\frac{5}{6} \int_{0}^{\pi / 2} \cos ^{4} x d x=0+\frac{5}{6} \int_{0}^{\pi / 2} \cos ^{4} x d x
$$

Now we use the reduction formula for $n=4$

$$
\frac{5}{6} \int_{0}^{\pi / 2} \cos ^{4} x d x=\frac{5}{6} \cdot\left(\left.\frac{1}{4} \sin x \cdot \cos ^{3} x\right|_{0} ^{\pi / 2}+\frac{3}{4} \int_{0}^{\pi / 2} \cos ^{2} x d x\right)=0+\frac{5}{8} \int_{0}^{\pi / 2} \cos ^{2} x d x
$$

Finally for $n=2$ we get

$$
\begin{gathered}
\frac{5}{8} \int_{0}^{\pi / 2} \cos ^{2} x d x=\frac{5}{8} \cdot\left(\left.\frac{1}{2} \sin x \cdot \cos x\right|_{0} ^{\pi / 2}+\frac{1}{2} \int_{0}^{\pi / 2} \cos ^{0} x d x\right)=0+\frac{5}{16} \int_{0}^{\pi / 2} d x \\
\frac{5}{16} \int_{0}^{\pi / 2} d x=\left.\frac{5}{16} x\right|_{0} ^{\pi / 2}=\frac{5}{16} \cdot \frac{\pi}{2}=\frac{5 \pi}{32}
\end{gathered}
$$

Answer: the reduction formula is
$\int \cos ^{n} x d x=\frac{1}{n} \sin x \cdot \cos ^{n-1} x+\frac{n-1}{n} \int \cos ^{n-2} x d x$,

$$
\int_{0}^{\pi / 2} \cos ^{6} x d x=\frac{5 \pi}{32}
$$

