Answer on Question \#85479 - Math - Calculus

Differentiate the following functions w.r.t. x.

Question

i) $x \ln \left(x^{*} x\right)+(\sin x)$

Solution

i)

We use logarithm power rule $\ln x^{y}=y \ln x$, the sum rule $(f+g)^{\prime}=f^{\prime}+g^{\prime}$, the product rule $(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}$ and rules for basic functions $\left(x^{n}\right)^{\prime}=n x^{n-1},(\ln x)^{\prime}=\frac{1}{x^{\prime}}(\sin x)^{\prime}=\cos x$. $(x \ln x x+\sin x)^{\prime}=\left(x \ln x^{2}+\sin x\right)^{\prime}=(2 x \ln x+\sin x)^{\prime}=2\left((x)^{\prime} \ln x+x(\ln x)^{\prime}\right)+(\sin x)^{\prime}=$

$$
=2\left(\ln x+x \cdot \frac{1}{x}\right)+\cos x=2 \ln x+\cos x+2
$$

Question

ii) $\sinh (\tanh x)-1$

Solution

ii)

Here we use the difference rule $(f-g)^{\prime}=f^{\prime}-g^{\prime}$, the chain rule $f(g(x))=f^{\prime}(g(x)) \cdot(g(x))^{\prime}$ and rules for basic functions $(\sinh x)^{\prime}=\cosh x,(\tanh x)^{\prime}=\frac{1}{\cosh ^{2} x}$ $(\sinh (\tanh x)-1)^{\prime}=\sinh ^{\prime}(\tanh x) \cdot(\tanh x)^{\prime}-1^{\prime}=\cosh (\tanh x) \cdot \frac{1}{\cosh ^{2} x}-0=\frac{\cosh (\tanh x)}{\cosh ^{2} x}$

Answer:

i) $\quad(x \ln x x+\sin x)^{\prime}=2 \ln x+\cos x+2$
ii) $\quad(\sinh (\tanh x)-1)^{\prime}=\frac{\cosh (\tanh x)}{\cosh ^{2} x}$

