Answer on Question \#85448 - Math - Statistics and Probability

Question

A continuous random variable X has moment generating function $M(t)=e^{2 t^{2}+3 t}$. Determine the $E(X)$ and $\operatorname{Var}(X)$.
Probability that the mean is within two standard deviations.

Solution

$$
\begin{aligned}
& E(X)=\left.\frac{d}{d t} M(t)\right|_{t=0} \\
& M(t)=e^{2 t^{2}+3 t} \\
& \frac{d}{d t} M(t)=\frac{d}{d t}\left(e^{2 t^{2}+3 t}\right)=e^{2 t^{2}+3 t}(4 t+3) \\
& E(X)=\left.\frac{d}{d t} M(t)\right|_{t=0}=e^{0+0}(4(0)+3)=3
\end{aligned}
$$

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}
$$

$$
E\left(X^{2}\right)=\left.\frac{d^{2}}{d t^{2}} M(t)\right|_{t=0}
$$

$$
\frac{d^{2}}{d t^{2}} M(t)=\frac{d}{d t}\left(e^{2 t^{2}+3 t}(4 t+3)\right)=e^{2 t^{2}+3 t}(4 t+3)^{2}+4 e^{2 t^{2}+3 t}
$$

$E\left(X^{2}\right)=\left.\frac{d^{2}}{d t^{2}} M(t)\right|_{t=0}=e^{0+0}(4(0)+3)^{2}+4 e^{0+0}=13$
$\operatorname{Var}(X)=13-(3)^{2}=4$
We have normal distribution, where
$M(t)=e^{\frac{\sigma^{2}}{2} t^{2}+\mu t}$
$\mu=3, \sigma^{2}=4$
For the normally distributed variable $X, 95 \%$ of the data is within 2 standard deviations (σ) of the mean (μ) :
$P(\mu-2 \sigma \leq X \leq \mu+2 \sigma)=0.9545$.

