Answer to Question \#85442 - Math - Statistics and Probability

Question: A large Computer Company A, subcontract the manufacturing of its circuit board to two Companies, 40% to Company B and 60% to Company C. Company B in turn subcontracts 70% of the orders it receives from Company A to Company D and the remaining 30% to Company E , both subsidiaries of Company B. When the boards are completed by companies D,E and C , they are shipped to Company A to be used in various computer models. It has been found that $1.5 \%, 1 \%$ and 0.5% of the boards from D,E and C respectively prove defection during the 90 day warranty period after a computer is first sold. What is the probability that a given board will be defective during the 90 day period?

Solution: Let us define the following events:

- B: The event that the board came from company B
- C: The event that the board came from company C
- D: The event that the board came from company D
- E: The event that the board came from company E

It is clear that, $\mathbf{B}=\mathbf{D} \cup \mathbf{E}$ and the events \mathbf{D} and \mathbf{E} are disjoint. Also the events \mathbf{B} and \mathbf{C} are mutually exclusive and exhaustive.

Given a board, we want to find the probability that it will be defective during the 90 day period. Let \mathbf{X} denote the event that the board will be defective in the warranty period.
$P(\mathbf{X})$
$=P(\mathbf{X} \cap \mathbf{B})+P(\mathbf{X} \cap \mathbf{C})[$ As, \mathbf{B} and \mathbf{C} are exclusive and exhaustive]
$=P(\mathbf{X} \cap \mathbf{D})+P(\mathbf{X} \cap \mathbf{E})+P(\mathbf{X} \cap \mathbf{C})$
$=P(\mathbf{X} \mid \mathbf{D}) P(\mathbf{D})+P(\mathbf{X} \mid \mathbf{E}) P(\mathbf{E})+P(\mathbf{X} \mid \mathbf{C}) P(\mathbf{C})$
$=P(\mathbf{X} \mid \mathbf{D}) P(\mathbf{D} \mid \mathbf{B}) P(\mathbf{B})+P(\mathbf{X} \mid \mathbf{E}) P(\mathbf{E} \mid \mathbf{B}) P(\mathbf{B})+P(\mathbf{X} \mid \mathbf{C}) P(\mathbf{C})$
Observe that, all the values of the above expression has been given in the question. The values are,
$P(\mathbf{X} \mid \mathbf{D})=\frac{1.5}{100}$
$P(\mathbf{X} \mid \mathbf{E})=\frac{1}{100}$
$P(\mathbf{X} \mid \mathbf{C})=\frac{0.5}{100}$
$P(\mathbf{D} \mid \mathbf{B})=\frac{70}{100}$
$P(\mathbf{E} \mid \mathbf{B})=\frac{30}{100}$
$P(\mathbf{B})=\frac{40}{100}$
$P(\mathbf{C})=\frac{60}{100}$
Substituting these values in the expression, we obtain,

$$
\begin{aligned}
& P(\mathbf{X}) \\
= & \frac{1.5}{100} \frac{70}{100} \frac{40}{100}+\frac{1}{100} \frac{30}{100} \frac{40}{100}+\frac{0.5}{100} \frac{60}{100} \\
= & \frac{4200+1200+3000}{100^{3}} \\
= & \frac{8400}{100^{3}} \\
= & 0.84 \%
\end{aligned}
$$

Answer: Hence, the probability that a given board will be defective within 90 day period is $\mathbf{0 . 8 4 \%}$.

