Answer on Question \#85422 - Math - Calculus

Question

Find, by the first principle, the derivative of $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}-1$ at a point x_{0}. Hence, find the equations of the tangent and normal to its curve at the point $(-2,-9)$.

Solution

$f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
$f(x)=x^{3}-1$
$f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{\left(x_{0}+h\right)^{3}-1-\left(x_{0}{ }^{3}-1\right)}{h}=$
$=\lim _{h \rightarrow 0} \frac{\left(x_{0}+h-x_{0}\right)\left(\left(x_{0}+h\right)^{2}+\left(x_{0}+h\right) x_{0}+x_{0}{ }^{2}\right)}{h}=$
$=\lim _{h \rightarrow 0} \frac{h\left(\left(x_{0}+h\right)^{2}+\left(x_{0}+h\right) x_{0}+x_{0}^{2}\right)}{h}=$
$=\lim _{h \rightarrow 0}\left(\left(x_{0}+h\right)^{2}+\left(x_{0}+h\right) x_{0}+x_{0}{ }^{2}\right)=$
$=\left(x_{0}+0\right)^{2}+\left(x_{0}+0\right) x_{0}+x_{0}{ }^{2}=3 x_{0}{ }^{2}$
$f^{\prime}\left(x_{0}\right)=3 x_{0}{ }^{2}$
Find the slope of the tangent to the curve at the point $(-2,-9)$
slope $_{1}=m_{1}=f^{\prime}(-2)=3(-2)^{2}=12$
The equation of the tangent to the curve at the point $(-2,-9)$ in point-slope form

$$
y-(-9)=12(x-(-2))
$$

The equation of the tangent to the curve at the point $(-2,-9)$ in slope-intercept form

$$
y=12 x+15
$$

The equation of the tangent to the curve at the point $(-2,-9)$ in standard form

$$
12 x-y=-15
$$

Find the slope of the normal to the curve at the point $(-2,-9)$
slope $_{2}=m_{2}=-\frac{1}{f^{\prime}(-2)}=-\frac{1}{3(-2)^{2}}=-\frac{1}{12}$
The equation of the normal to the curve at the point $(-2,-9)$ in point-slope form

$$
y-(-9)=-\frac{1}{12}(x-(-2))
$$

The equation of the normal to the curve at the point $(-2,-9)$ in slope-intercept form

$$
y=-\frac{1}{12} x-\frac{55}{6}
$$

The equation of the normal to the curve at the point $(-2,-9)$ in standard form $x+12 y=-110$

