Answer to Question \#85289 - Math - Calculus

Question

A 24 feet ladder rests against a wall. Let θ be the angle between the top of the ladder and the wall and let x be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does x change with respect to θ when $\theta=\mathrm{pi} / 3$.

Solution

Given that x is the distance from the bottom of the ladder to the wall.
Let the height of the top of the ladder from the base be y.
Then the equation is:
$x^{2}+y^{2}=24^{2}$
$x^{2}+y^{2}=576$
$x^{2}=576-y^{2}$
Differentiating the above equation with respect to θ we get
$2 x \frac{d x}{d \theta}=0-2 y \frac{d y}{d \theta}$
$x \frac{d x}{d \theta}=-y \frac{d y}{d \theta}$
$\frac{d x}{d \theta}=\left(-\frac{y}{x}\right) \frac{d y}{d \theta}$
Again we have,
$\tan \theta=\frac{x}{y}$
$\frac{y}{x}=\cot \theta$
At $\theta=\frac{\pi}{3}$, we have,

$$
\begin{aligned}
& \frac{y}{x}=\cot \frac{\pi}{3}=\frac{1}{\sqrt{3}} \\
& y=\frac{x}{\sqrt{3}} \\
& y^{2}=\frac{x^{2}}{3}
\end{aligned}
$$

Again,
$x^{2}+y^{2}=576$
$x^{2}+\frac{x^{2}}{3}=576$
$\frac{4 x^{2}}{3}=576$
$x^{2}=144 \times 3$
$x=12 \sqrt{3}$
$\frac{d y}{d \theta}=\frac{1}{\sqrt{3}}\left(\frac{d x}{d \theta}\right)$
Then we get,

$$
\begin{aligned}
& \frac{d x}{d \theta}=\left(-\frac{1}{\sqrt{3}}\right)\left(\frac{1}{\sqrt{3}} \frac{d x}{d \theta}\right) \\
& \frac{d x}{d \theta}+\frac{1}{3} \frac{d x}{d \theta}=0 \\
& \frac{4}{3} \frac{d x}{d \theta}=0 \\
& \frac{d x}{d \theta}=0
\end{aligned}
$$

