Answer on Question #85258 – Math – Algebra

Question

Prove that $2^n > 1 + n^{(1/2^n - 1)}$ for all n > 2, using the inequalities.

Solution

For all n > 0:

$$2^n > 2^0;$$

 $2^n > 1;$
 $1 < 2^n;$
 $1/2^n < 1;$
 $1/2^n - 1 < 1 - 1;$
 $1/2^n - 1 < 0.$ (1)

From the inequality (1) for all n > 1:

 $n^{(1/2^{n} - 1)} < n^{0};$ $n^{(1/2^{n} - 1)} < 1;$ $1 + n^{(1/2^{n} - 1)} < 1 + 1;$ $1 + n^{(1/2^{n} - 1)} < 2^{1};$ $1 + n^{(1/2^{n} - 1)} < 2^{n};$ $2^{n} > 1 + n^{(1/2^{n} - 1)}. (2)$

The inequality (2) is true for all n > 1, so it is true for all n > 2. Hence proved.