Question

If $y = \arcsin(x)$ prove that

$$y_{n+2}(0) = n^2 y_n(0)$$

 y_n means *n*th derivative of *n*.

Solution

Let $y = \arcsin(x)$.

The first derivative of $\arcsin(x)$ is given by

$$y' = (\arcsin(x))' = \frac{1}{\sqrt{1 - x^2}}$$

This expression can be written as

$$y'\sqrt{1-x^2} = 1$$

If y_n means *n*th derivative of *n*, then squaring both sides we get $y_1^2(1-x^2) = 1$

Differentiating we get

$$2y_1y_2(1-x^2) - 2xy_1^2 = 0$$

$$y_2(1-x^2) - xy_1 = 0$$

Using the Leibniz rule, we find

$$y_{n+2}(1-x^2) + \binom{n}{1}(-2x)y_{n+1} + \binom{n}{2}(-2)y_n - xy_{n+1} - \binom{n}{1}(1)y_n = 0$$

(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - $\left(\frac{n(n-1)}{2}(2) + n\right)y_n = 0$
(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0
When $x = 0$,
$$y_{n+2}(0) - n^2y_n(0) = 0$$

$$y_{n+2}(0) - n^2 y_n(0) = 0$$

$$y_{n+2}(0) = n^2 y_n(0)$$

Answer provided by https://www.AssignmentExpert.com