Answer on Question \#85255 - Math - Calculus

Question

If $y=\arcsin (x)$ prove that

$$
y_{n+2}(0)=n^{2} y_{n}(0)
$$

y_{n} means nth derivative of n.

Solution

Let $\mathrm{y}=\arcsin (x)$.
The first derivative of $\arcsin (x)$ is given by

$$
y^{\prime}=(\arcsin (x))^{\prime}=\frac{1}{\sqrt{1-x^{2}}}
$$

This expression can be written as

$$
y^{\prime} \sqrt{1-x^{2}}=1
$$

If y_{n} means nth derivative of n, then squaring both sides we get

$$
y_{1}^{2}\left(1-x^{2}\right)=1
$$

Differentiating we get

$$
\begin{gathered}
2 y_{1} y_{2}\left(1-x^{2}\right)-2 x y_{1}^{2}=0 \\
y_{2}\left(1-x^{2}\right)-x y_{1}=0
\end{gathered}
$$

Using the Leibniz rule, we find

$$
\begin{gathered}
y_{n+2}\left(1-x^{2}\right)+\binom{n}{1}(-2 x) y_{n+1}+\binom{n}{2}(-2) y_{n}-x y_{n+1}-\binom{n}{1}(1) y_{n}=0 \\
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(\frac{n(n-1)}{2}(2)+n\right) y_{n}=0 \\
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0
\end{gathered}
$$

When $x=0$,

$$
\begin{gathered}
y_{n+2}(0)-n^{2} y_{n}(0)=0 \\
y_{n+2}(0)=n^{2} y_{n}(0)
\end{gathered}
$$

