Question

Prove that $2n > 1 + \sqrt[n]{2n-1}$, $\forall n \ge 2$, using the inequalities.

Solution

$$\sqrt[n]{2n-1} > 0 \tag{1}$$

$$2n-1 > 1$$

$$1 - \frac{1}{n} > 0$$

$$(2n-1)^{1 - \frac{1}{n}} > (2n-1)^{0} = 1 \tag{2}$$

$$(2n-1)^{1 - \frac{1}{n}} - (1)^{1 - \frac{1}{n}} > 0$$

$$\sqrt[n]{2n-1}\left((2n-1)^{1-\frac{1}{n}}-1\right)>0,$$

hence

For $n \ge 2$:

$$(2n-1) - \sqrt[n]{2n-1} > 0$$

2n > 1 + $\sqrt[n]{2n-1}$

Q.E.D.

Answer provided by https://www.AssignmentExpert.com