Answer to Question \#84751 - Math - Calculus
Consider the function
$f(x)=x^{2}-2 x+7$
First Derivative Test definition :
Suppose that $x=c$ is a critical point of $f(x)$ then,
If $f^{\prime}(x)>0$ to the left of $x=c$ and $f^{\prime}(x)<0$ to the right of $x=c$ then $x=$
c is a local maximum.
If $f^{\prime}(x)<0$ to the left of $x=c$ and $f^{\prime}(x)>0$ to the right of $x=c$ then $x=$ c is a local minimum.
If $f^{\prime}(x)$ is the same sign on both sides of $x=c$ then $x=c$ is neither a local maximum nor a local minimum. Critical points are points where the function is defined and its derivative is zero or undefined

Differentiate the function with respect to x we get

$f^{\prime}(x)=2 x-2=0$
$\Rightarrow x=1$
Domain of $x^{2}-2 x+7: \quad-\infty<x<\infty$
The function monotone intervals are :
$-\infty<x<1,1<x<\infty$
Check the sign of $2 x-2$ at $-\infty<x<1$: Negative
Check the sign of $2 x-2$ at $1<x<\infty$: Positive
Hence, function is increasing at $[1, \infty)$
Hence, function is decreasing at $(-\infty, 1)$
Thus, the function is monotonic at $[1,+\infty)$.

