## **Answer on Question #84749 – Math – Calculus**

## **Question**

If 
$$f(x) = \frac{4x^2 - 7x - 2}{x - 2}$$
,  $x \ne 2$  find a  $\delta > 0$  such that  $|f(x) - 9| < \frac{1}{100}$  for  $|x - 2| < \delta$ .

Hence show that  $\lim_{x\to 2} f(x) = 9$ .

## **Solution**

We want to find a number  $\delta > 0$  such that

$$|f(x) - 2| < \delta, x \neq 2 \text{ then } |f(x) - 9| < \varepsilon$$

$$|f(x) - 9| = \left| \frac{4x^2 - 7x - 2}{x - 2} - 9 \right| = \left| \frac{(4x + 1)(x - 2)}{x - 2} - 9 \right| = |4x + 1 - 9| = 4|x - 2|$$

Therefore, we want

if 
$$0 < |x - 2| < \delta$$
 then  $4|x - 2| < \varepsilon$ 

that is

if 
$$0 < |x - 2| < \delta$$
 then  $|f(x) - 9| < \varepsilon$ 

This suggests that we should choose

$$\delta = \frac{\varepsilon}{4}$$

If 
$$\varepsilon = \frac{1}{100}$$
 then  $\delta = \frac{\varepsilon}{4} = \frac{1}{400}$ .

Given 
$$\varepsilon > 0$$
, choose  $\delta = \varepsilon/4$ . If  $0 < |x - 2| < \delta$ , then

$$|f(x) - 9| = \left| \frac{4x^2 - 7x - 2}{x - 2} - 9 \right| = \left| \frac{(4x + 1)(x - 2)}{x - 2} - 9 \right| =$$

$$= |4x + 1 - 9| = 4|x - 2| < 4\delta = 4\left(\frac{\varepsilon}{4}\right) = \varepsilon$$

Therefore, by the definition of limit

$$\lim_{x \to 2} f(x) = 9, x \neq 2$$