Answer on Question \#84747 - Math - Calculus

Question

For which values of k, is the function f, defined as below, continuous at $x=2$?

$$
f(x)= \begin{cases}3-k x, & 1 \leq x<2 \\ \frac{x^{2}}{4}-3, & x \geq 2\end{cases}
$$

Further, at which other points in $[1, \infty)$ is f continuous, and why?

Solution

$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(3-k x)=3-2 k$
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(\frac{x^{2}}{4}-3\right)=\frac{(2)^{2}}{4}-3=-2$
$f(2)=\frac{(2)^{2}}{4}-3=-2$
If the function f is continuous at $x=2$, then
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2} f(x)$ and $\lim _{x \rightarrow 2} f(x)=f(2)$
Then
$3-2 k=-2=>5=2 k \quad=>k=\frac{5}{2}$
$\lim _{x \rightarrow 2^{-}} f(x)=-2=\lim _{x \rightarrow 2^{+}} f(x)=>\lim _{x \rightarrow 2} f(x)=-2=>\lim _{x \rightarrow 2} f(x)=f(2)=>$
$=>f(x)=\left\{\begin{array}{ll}3-\frac{5}{2} x, & 1 \leq x<2 \\ \frac{x^{2}}{4}-3, & x \geq 2\end{array}\right.$ is continuous at $x=2$.
The function f is continuous from the left at $x=1$ as polynomial.
The function f is continuous on $(1,2)$ as polynomial.
The function f is continuous at $x=2$.
The function f is continuous on $(2, \infty)$ as polynomial.
The function f is continuous from the left at $x=1$.
The function f is continuous on $(1, \infty)$.

