Answer on Question \#84613 - Math - Statistics and Probability

Question

We would like to conduct a hypothesis test at the 2% level of significance to determine whether the true mean pH level in a lake differs from 7.0.
Lake pH levels are known to follow a normal distribution. We take 11 water samples from random locations in the lake. For these samples, the mean pH level is 7.3 and the standard deviation is 0.37 . Using the critical value approach, the decision rule would be to reject H 0 if the test statistic is:
A) less than -2.054 or greater than 2.054
B) less than -2.326 or greater than 2.326
C) less than -2.359 or greater than 2.359
D) less than -2.718 or greater than 2.718
E) less than -2.764 or greater than 2.764

Solution

$H_{0}: \mu=7.0, \quad H_{1}: \mu \neq 7.0$
This is a two-tailed test.
Population normal, σ unknown
Sample: $n=11, \bar{x}=7.3, s=0.37$, $s e=\frac{s}{\sqrt{n}}=\frac{0.37}{\sqrt{11}} \approx 0.11156$
$d f=n-1=10$
$\bar{x}-t_{\alpha / 2, d f} \cdot \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x}+t_{\alpha / 2, d f} \cdot \frac{s}{\sqrt{n}}$
$\alpha=0.02$
$t_{\alpha / 2, d f}=t_{0.01,10}=-2.763767$
Using the critical value approach, the decision rule would be to reject H_{0} if the test statistic is:
E) less than -2.764 or greater than 2.764 .

Answer: E).

