ANSWER to Question \#84596, Math / Statistics and Probability

Let probability of a child having genotype $A B=p=\rrbracket / 2$
Then probability of a child having genotype $B B=1-p=1-\not / 2=\not / 2$
Let random variable $X=$ number of children having genotype $A B$ in 5 children i.e. in 5 trials
$n=5$, probability of success $=p, X \sim B(n, p)$ i.e. $X \sim B(5, \not / 2)$
$\mathrm{P}[\mathrm{X}=\mathrm{r}]=\binom{5}{r} p^{r}(1-p)^{5-r}$

$$
r=0,12,3,4,5
$$

We need the probability that 2 children have genotype $A B$ and 3 children have genotype $B B$ i.e. we need $P[X=2]$.

$$
\mathrm{P}[\mathrm{X}=2]=\binom{5}{2} p^{2}(1-p)^{5-2}=\frac{5!}{2!3!} \cdot\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{3}=\frac{5 \times 4 \times 3!}{2 \times 3!} \cdot \frac{1}{2^{5}}=\frac{5}{16}
$$

